10 SO 01-10
10.1 Test Data
R
Python
df_y = pyarrow.feather.read_feather('data/Y_01_pyarrow.feather')
df_y.info(memory_usage = False)
## <class 'pandas.core.frame.DataFrame'>
## RangeIndex: 4 entries, 0 to 3
## Data columns (total 4 columns):
## # Column Non-Null Count Dtype
## --- ------ -------------- -----
## 0 INT 4 non-null int64
## 1 NUM 4 non-null float64
## 2 CHR 4 non-null object
## 3 LGL 4 non-null bool
## dtypes: bool(1), float64(1), int64(1), object(1)
10.2 001-010
- 001 (SO): How to make a reproducible example or Minimum Working Example (MWE)
- R: All Libraries by
library()
, Minimal or standard Dataset bydata()
&dput()
, Minimal Running Code,set.seed()
for reproducibility,sessionInfo()
for Environment and OS Information, Revert all the changes made to environment, R Options etc. - Python: Use write_feather()
- R: All Libraries by
R
aa <- df_r
dput(aa) #Write an Object to Console
## structure(list(INT = 1:4, NUM = c(0, 1, 2, 3), CHR = c("a", "b",
## "c", "d"), LGL = c(FALSE, TRUE, FALSE, TRUE)), class = "data.frame", row.names = c(NA,
## -4L))